project: K-Means Clustering Assignment

Story points 8
Tags kmeans sklearn clustering
Hard Prerequisites
IMPORTANT: Please review these prerequisites, they include important information that will help you with this content.
  • PROJECTS: Statistical Thinking
  • PROJECTS: Logistic regression
  • TOPICS: K-Means Clustering
  • TOPICS: Jupyter notebooks best practices
  • TOPICS: Data Science Methodology

  • Pre-requisites

    Read through the K-Means Tutorials at TOPIC: K-Means Clustering before starting this project.

    Clustering whisky distilleries according to tasting Profiles

    Data: Whisky Tasting Profiles

    Use K-Means clustering to cluster whisky distilleries by their tasting profile. Use the elbow or silhouette method to find the optimal number of clusters.

    To see how successful clustering was, report relevant metrics (e.g. silhouette, adjusted rand index, etc.) and create a plot showing the different distilleries, their classes according to the k-Means clustering, and the distance between points. You can use sklearn.manifold to get Euclidean distances between points.

    Describe the main differences between the cluster - what are the factors that differ between classes?


    RAW CONTENT URL