CSI193P |IOS APPLICATION DEVELOPMENT FALL 2017

Assignment V:
Image Gallery

Objective
The goal of this assignment 1s to understand Table View, Collection View,

multithreading, Scroll View and Text Fields.

Start this assignment from scratch. Itis unrelated to the first four assignments of the
quarter.

This assignment must be submitted using the submit script described here by the start
of lecture next Wednesday (i.e. before lecture 14). You may submit it multiple times if
you wish. Only the last submission before the deadline will be counted.

Be sure to review the Hints section below!

Also, check out the latest in the Evaluation section to make sure you understand what
you are going to be evaluated on with this assignment.

Materials

* You will want at least the Utilities.swift file (you’ll need the imageURL var which 1s added
to URL via an extension) out of the EmojiArt demo code from this week. You're
welcome to use other code from all the code posted this week.

PAGE | OF 9 ASSIGNMENT V: IMAGE GALLERY

http://web.stanford.edu/class/cs193p/cgi-bin/drupal/submissions
https://cs193p.stanford.edu/Fall2017/A5Utilities.swift.zip

CSI193P |IOS APPLICATION DEVELOPMENT FALL 2017

Required Tasks

1. Build an application centered on a Collection View which contains images dragged in
via Drag and Drop. A collection of such images is called an “Image Gallery.”

2. Only allow dropping of items which have both a UIImage representation and a URL
representation.

3. Use the UIImage in the drop for one purpose only: to determine the aspect ratio with
which to display the image you fetch from the URL (i.e. do not use the dropped UIImage
to actually draw anything).

4. Every item in the Collection View should have exactly the same width, but each item’s
height should be determined by its aspect ratio to that width.

5. The user must also be able to rearrange the items in the Collection View via Drag and
Drop.

6. Never block the main thread. Fetching URLs must be done off the main queue.

7. Any time that an image 1s being fetched into a cell from its URL, an activity indicator
should be spinning in that cell letting the user know that you are working on it.

8. Don’t cache images. Fetch them from their URL each time you need them.

9. Implement a pinch gesture on your entire Collection View which scales the width of
your cells (remember, all cells have the same width).

10. Add a Split View Controller to your application whose Detail is the Collection View
above and whose Master 1s a Table View which lets the user choose an Image Gallery
by name (i.e. this is a Table View full of the names of Image Galleries that, when
touched on, opens up an Image Gallery in the Collection View described above,
showing all of its images and allowing the user to drop more in).

11.Implement swipe to delete Image Galleries, however, deleting them just moves them to
another section in your table called “Recently Deleted” (so your Table View will have
two sections, one with no title, and one with the title Recently Deleted). Deleting an
Image Gallery from the Recently Deleted section permanently deletes it from the
table.

12. Implement swipe (in the other direction) to undelete an Image Gallery from the
Recently Deleted section (1.e. move it back to the other section). Do not allow the user
to open a Recently Deleted Image Gallery without undeleting it first. See the Hints
for how to do this sort of “swiping in the other direction” UL

13. Allow users to double tap on an Image Gallery in your Table View to start editing its
name via a UITextField in the row in the table (i.e. edit the name in place).

14. When a user taps on a cell in your Collection View, segue to a new MVC which
presents the image in a scroll view that fills the entire MVC so that the user can zoom

PAGE 2 OF 9 ASSIGNMENT V: IMAGE GALLERY

CSI193P |IOS APPLICATION DEVELOPMENT FALL 2017

in and out to examine the image in detail. This means your Collection View will be
embedded inside a Navigation Controller.

15. Your Image Galleries do NOT have to persist between runnings of the application.
We’ll be doing that next week.

16.In order to simplify this assignment (and let you focus on the primary things to learn),
it is allowed for your Table View to have no selection even if you are editing an Image
Gallery in your Collection View (this might happen, for example, at startup or because
you deleted the Image Gallery that is currently showing in the Collection View or you
changed the name of or undeleted some other document and now nothing is left
selected). But when the user touches on a row in the Table View, it should open that
Image Gallery up and start editing it. That’s the requirement.

17. This 1s an 1Pad-only application (this week anyway).

PAGE 3 OF 9 ASSIGNMENT V: IMAGE GALLERY

CSI193P |IOS APPLICATION DEVELOPMENT FALL 2017

1. You will NOT want to use the ImageFetcher object from lecture in this assignment.
Just fetch the URL like Cassini did. That’s because ImageFetcher relies on a backup
image if the URL fails to load and this assignment only uses the UIImage to get the
aspect ratio (i.e. it is not allowed to use it as a backup).

2. VERY IMPORTANT: The URLs that come from places like Google actually need to
be massaged a little bit to get at the pure image URL. The Utilities provided with the
EmojiArt demo have a simple extension to URL to accomplish this called imageURL.
Essentially, every time you go off to fetch an image, do it with the URL’s imageURL. If
you try to fetch the URL directly, it will likely not work much of the time.

3. When a drop happens, you’ll have to collect both the aspect ratio (from the UIImage)
and the URL before you can add an item. You could do this straightforwardly with a
couple of local variables that are captured by the closures used to load up the drag
and drop data.

4. The best implementation of dropping into your Collection View would use a
placeholder (as shown in lecture), but that is not required by the Required Tasks. In
some ways it might be easier to do with placeholders.

5. Remember that your UICollectionViewCell subclass(es) can have logic in them too.
They are not limited to being just a container for outlets.

6. It should be quite obvious if you’ve gotten the multithreading right because if you
drop a bunch of large images in and then zoom 1n so that as you scroll around enough
that you are reusing cells a lot, you should see a bunch of spinning wheels appearing,
That’s what we’ll be doing when we grade it!

7. When you change the width of the cells in your UICollectionView, you’ll need it to
lay itself out again. The most efficient way to do this is to directly ask the
UICollectionView’s UICollectionViewFlowLayout to do its thing. You can do this by
invalidating the layout of the UICollectionViewFlowLayout. If you define this
convenience var in your Controller ...

var flowLayout: UICollectionViewFlowLayout? {

return collectionView?.collectionViewlLayout as? UICollectionViewFlowLayout

}
... then you can invalidate the flow layout with this line of code ...
flowLayout?.invalidatelLayout()

... and the UICollectionView will immediately re-layout the cell positions using your
new itemSize (which you are likely providing via the delegate method mentioned in
lecture).

8. The way you do undelete swipes is with the UITableViewController method
leadingSwipeActionsConfigurationForRowAt:. This method returns a

PAGE 4 OF 9 ASSIGNMENT V: IMAGE GALLERY

CSI193P |IOS APPLICATION DEVELOPMENT FALL 2017

UISwipeActionsConfiguration that contains a list of UIContextualActions. All you
need to do 1s create one of these UIContextualActions for Undelete which takes a
closure that does the undelete. Remember to modify both your Model and the Table
in that closure.

9. You will not need to do the “swap in a different cell” trick we did in EmojiArt to do
your Image Gallery name editing in your Table View. Simply use a UITextField all
the time to draw the name and set isEnabled on it to turn editability on when needed
based on the double tap gesture.

10. You can prevent segueing from the Recently Deleted rows either by using a different
prototype for them, or by implementing shouldPerformSegue (withIdentifier:).

11. When you delete the last row in a section (e.g. you undelete the last Recently Deleted
Image Gallery), you might have to send reloadSections to the table view for that
section to get it to clear out the section title for that now-empty section. It seems like
UITableView should do this automatically, but in some circumstances, it doesn’t.

12. When you update your Model, you can often just reloadData to update it, but this will
not be animated and be sort of jerky. Using deleteRows, insertRows, moveRows, etc.
will provide animation and look a lot better (but is not Required).

13. Any time you modify your table with a combination of methods like deleteRows or
insertRows or moveRows you have to do all the modifications together or you’ll crash
because your Table View’s UI will be temporarily out of sync with your Model. You
group calls to these methods together with the performBatchUpdates method. This
also nicely has a completion handler that you can use to do something after the
adjustment to the Table View is finished if you need to.

14.1f the result of your fetch of a URL is not a valid image, you’ll probably want to put
some indication of that in the resultant Collection View cell. Maybe a frowny face or
a note to that effect for the user? Just having a blank space in your Collection View
might be a bit confusing to the user. Up to you.

15. One of the trickier parts of this assignment, actually, is the test of your MVC skills
that comes along with being able to segue from your Table View MVC to your
Collection View MVC. The Model of your Collection View MVC is essentially an
Image Gallery. The Model of your Table View MVC is a list of those Image
Galleries. The only trickiness is that both MVCs can edit an Image Gallery (because
the Table View MVC can change the Image Gallery’s name). Just be sure to come up
with a simple data structure that allows your Table View MVC to hand an Image
Gallery off to your Collection View MVC and still retain the ability to change the
Image Gallery’s name.

16. Your internal data structure for an Image Gallery is pretty simple (it just needs to have
a list of URLs and their aspect ratios). Don’t overthink this part of the assignment.

PAGE 5 OF 9 ASSIGNMENT V: IMAGE GALLERY

CSI193P |IOS APPLICATION DEVELOPMENT FALL 2017

17. You might want to set your splitViewController’s preferredDisplayMode
to .primaryOverlay. This is because the focus of your application is the Collection
View and you don’t want the Table View to be on screen very much (just when you
need to switch to a different Image Gallery). Since this can get reset by 10S when
your layout changes, the best place to set it 1s in viewWillLayoutSubviews, but be
careful to check if it’s already set because setting it again might cause a layout to
happen and you’ll get into an infinite loop! Also, you can add a button to the
navigation bar of your Detail which will cause the Master to appear (i.e. do the same
thing as the user swiping from the left) using this code in your Detail’s viewDidLoad ...

navigationItem.leftBarButtonItem = splitViewController?.displayModeButtonItem

18. It seems that sometimes when you drag into a Collection View and it starts
rearranging the items to make room for a potential drop, that if you drag off the
screen entirely, the Collection View will get into a bad state where it is “mid-
reordering”. This usually leads to a crash later (with complaints about reordering
while already in the process of reordering), which you can ignore. Watch the course
message boards for more on this.

19.1f you drag in a URL that 1s insecure (i.e. it’s http:// instead of https://), then it
will not be accepted by UIImage by default. You can change this in your Info.plist
file. Click on Info.plist, then right click on its background and choose Add Row from
the context menu that comes up, then scroll up to choose App Transport Security
Settings and then hit the little triangle to the left of the new row that is addd to make
the triangle point down, then hit the + button to add a sub row, then choose Allow
Arbitrary Loads and set it to YES. After doing this, you should have an entry like this
in your Info.plist ...

Cut
Copy
Paste

Shift Row Right

| v App Transport Security Settin... 2 © @ Dictionary 2 (1 item)
Value Type >
‘Add Row Allow Arbitrary Loads A Boolean YES

Show Raw Keys/Values
Property List Type »

Property List Editor Help

PAGE 6 OF 9 ASSIGNMENT V: IMAGE GALLERY

CSI193P |IOS APPLICATION DEVELOPMENT FALL 2017

Things to Learn

Here 1s a partial list of concepts this assignment is intended to let you gain practice with
or otherwise demonstrate your knowledge of.

Drag and Drop

Collection View

Table View

Text Field

Scroll View

Multithreading

N O RN

Delegation

PAGE 7 OF 9 ASSIGNMENT V: IMAGE GALLERY

CSI193P |IOS APPLICATION DEVELOPMENT FALL 2017

Evaluation

In all of the assignments this quarter, writing quality code that builds without warnings
or errors, and then testing the resulting application and iterating until it functions
properly is the goal.

Here are the most common reasons assignments are marked down:
* Project does not build.
* One or more items in the Required Tasks section was not satisfied.
* A fundamental concept was not understood.
* Project does not build without warnings.
* (ode 1s visually sloppy and hard to read (e.g. indentation is not consistent, etc.).
* Violates MVC.
e Ulis amess. Things should be lined up and appropriately spaced to “look nice.”

* Improper object-oriented design including proper use of value types versus
reference types.

* Improper access control (i.e. private not used appropriately).

* Your solution 1s difficult (or impossible) for someone reading the code to
understand due to lack of comments, poor variable/method names, poor solution
structure, long methods, etc.

Often students ask “how much commenting of my code do I need to do?” The answer
1s that your code must be easily and completely understandable by anyone reading it.
You can assume that the reader knows the 10S API, but should not assume that they
already know your (or any) solution to the assignment.

PAGE 8 OF 9 ASSIGNMENT V: IMAGE GALLERY

CSI193P |IOS APPLICATION DEVELOPMENT FALL 2017

Extra Credit

We try to make Extra Credit be opportunities to expand on what you've learned this
week. Attempting at least some of these each week is highly recommended to get the
most out of this course. How much Extra Credit you earn depends on the scope of the
item in question.

If you choose to tackle an Extra Credit item, mark it in your code with comments so your
grader can find it.

1. Let users drag things out of your Collection View into a trash can (maybe in the
navigation bar at the top) which will delete the URL from the Image Gallery.

2. Make your Image Galleries persist between launchings of your application using
UserDefaults. We’re going to learn about persistence next week, but we probably
won’t be using UserDefaults, so this is a good opportunity to learn about that.

3. Keep your Table View in sync with your Collection View at all times. This can be a
bit trickier than it might seem. Essentially, you must always have a selection in the
Table View and that selected row must always be what is showing in the Collection
View. Table View can be quite persnickety about selecting rows with selectRow(at:).
If it’s finishing off an animation, for example, it might not select. You might even find
you have to use a Timer to delay the selection a little bit to get it to take. Of course
you’ll also have to performSegue when you select a row on the user’s behalf. There’s
also the issue of selecting a row when the Table View first appears. You’ll likely have
to wait until at least viewDidAppear: to do that.

PAGE 9 OF 9 ASSIGNMENT V: IMAGE GALLERY

